Etna, il magma profondo causa del sisma

1710
Fig.2 Etna
Fig. 2 - Vista tridimensionale della componente orizzontale (in direzione Est-Ovest) degli spostamenti del suolo ricostruiti attraverso l’analisi delle immagini radar dei satelliti Sentinel-1 appartenenti alla costellazione del programma europeo Copernicus. Le due frecce bianche indicano la direzione degli spostamenti i cui valori massimi superano i 30 cm verso Ovest e i 50 cm verso Est sulla sommità del vulcano. Nell’area prossima all’epicentro del terremoto del 26 dicembre (indicato con la stella bianca), il massimo spostamento del suolo verso Est è di 14 cm, mentre il corrispondente spostamento verso Ovest è di 17 cm.
Tempo di lettura: 4 minuti

Individuate le relazioni causa-effetto che hanno determinato lo sciame simico durante l’eruzione laterale dell’Etna del dicembre 2018, culminato con il forte sisma (ML 4,8) del 26 dicembre, grazie ad un approccio multidisciplinare che ha integrato i dati radar satellitari con i dati sismologici e di terreno

Fig.1 Etna
Fig. 1 – In alto: vista tridimensionale dell’Etna in cui sono rappresentati le fessure eruttive (linee bianche) da dove è fuoruscita la colata di lava del 24 dicembre (in rosso), i principali lineamenti strutturali del vulcano (linee nere) e il terremoto del 26 dicembre (stella). I cerchi grigi rappresentano gli epicentri dei terremoti avvenuti dal 24 al 27 dicembre. In basso: fotografia acquisita da elicottero da ovest verso est, nella quale è possibile riconoscere le fessure eruttive (linee bianche a tratteggio) e i principali flussi lavici emersi dalle fessure (frecce rosse). SEC: Cratere di Sud-Est; NSEC: Nuovo Cratere di Sud-Est; NEC: Cratere di Nord-Est.

La risalita di magma profondo potrebbe essere la causa dello sciame sismico che ha accompagnato l’eruzione laterale dell’Etna del 24-27 dicembre 2018, culminato con il forte terremoto di magnitudo ML 4,8 che il 26 dicembre ha interessato la faglia di Fiandaca nel fianco sud-orientale del vulcano (Figura 1). A formulare questa ipotesi è uno studio condotto da un team di ricercatori dell’Istituto per il rilevamento elettromagnetico dell’ambiente del Consiglio nazionale delle ricerche (Cnr-Irea, Napoli) e dell’Istituto nazionale di geofisica e vulcanologia (Ingv, Catania e Roma), in collaborazione con il Dipartimento di protezione civile (Dpc, Roma). I risultati della ricerca, DInSAR analysis and analytical modelling of Mt. Etna displacements: the December 2018 volcano-tectonic crisis, sono stati pubblicati su «Geophysical Research Letters».

«La disponibilità dei dati radar satellitari della costellazione Sentinel-1, del programma europeo Copernicus, e della costellazione Cosmo-SkyMed, dell’Agenzia spaziale italiana (Asi) e del Ministero della Difesa – evidenzia Riccardo Lanari, direttore Cnr-Irea – ha permesso di rilevare, con precisione centimetrica, i movimenti del suolo che hanno interessato l’apparato vulcanico etneo nel corso dell’eruzione del 24-27 dicembre 2018. L’individuazione sia delle sorgenti magmatiche, sia di quelle sismogenetiche, che hanno causato le deformazioni rilevate dai satelliti, è stata possibile grazie ad un approccio multidisciplinare che ha integrato i dati sismologici e di terreno con i dati radar satellitari elaborati da Cnr-Irea». (Figura 2)

Grazie all’utilizzo di modelli matematici sono state ricostruite le sorgenti vulcaniche e sismiche che hanno generato le deformazioni, riuscendo a mostrare il nesso causale fra eruzione e terremoti.

«La modellazione applicata – afferma Vincenzo De Novellis, ricercatore Cnr-Irea – ha consentito di distinguere due differenti sorgenti deformative connesse con l’intrusione di magma: una molto superficiale, che ha causato l’apertura delle fessure osservate al suolo da cui è fuoruscita la colata lavica, ed un’altra molto più profonda (da 3 a 8,5 km) che ha esercitato una tensione sui fianchi del vulcano, innescando il movimento delle faglie e quindi generando i numerosi terremoti registrati dalla rete di monitoraggio dell’Ingv». (Figura 3)

Fig.3 Etna
Figura 3 – Vista tridimensionale dell’Etna che sintetizza i risultati del modello relativo agli eventi vulcano-tettonici del dicembre 2018. Nello spaccato sono stati rappresentati i due corpi magmatici (dicchi) modellati: uno più superficiale, che ha causato l’apertura delle fessure da cui è fuoriuscita la colata lavica, ed un secondo più profondo, che ha esercitato la tensione sui fianchi del vulcano. I quadratini che compongono i dicchi modellati indicano la maggiore presenza (in rosso) o minore (in rosa chiaro) del magma. Le linee viola rappresentano i piani di faglia calcolati dal modello, mentre quelle nere rappresentano le strutture tettoniche effettivamente affioranti in superficie. Infine, le frecce verdi schematizzano le pressioni esercitate dalle intrusioni magmatiche, che sembrano avere “innescato” il movimento delle faglie, tra cui la faglia di Fiandaca lungo la quale si è verificato il terremoto del 26 dicembre 2018 (l’epicentro è indicato con la stella bianca).

Che il forte abbassamento del suolo dell’area a ridosso de La Montagnola (circa 3 km a sud della zona dei crateri sommitali dell’Etna) fosse un effetto secondario dell’intrusione magmatica profonda lo si è capito solo grazie alla modellazione. «Con lo stesso approccio – aggiunge Simone Atzori, ricercatore Ingv – abbiamo analizzato e quantificato le interazioni avvenute tra la risalita dei magmi e le faglie circostanti, fra cui le strutture di Fiandaca, della Pernicana e di Ragalna».

La comprensione delle relazioni tra intrusioni magmatiche e terremoti rappresenta da sempre una sfida scientifica di estremo interesse, soprattutto per i risvolti che questi studi hanno sulla valutazione della pericolosità sismica e vulcanica.

«E non è detto che sia finita qui – conclude Marco Neri, primo ricercatore Ingv -. Confrontando le grandi deformazioni del suolo intervenute negli ultimi mesi e la piccola eruzione di dicembre, c’è da pensare che il vulcano abbia ancora energia da spendere, come dimostra la ripresa dell’attività eruttiva del 30 maggio 2019. Si tratta di valutazioni importanti, soprattutto per un territorio densamente urbanizzato come quello etneo, dove quasi un milione di persone vive a stretto contatto con uno dei vulcani più attivi al mondo».

Tali risultati costituiranno un punto di riferimento per migliorare le stime del rischio in un’area a così alta densità abitativa.

 

(Fonte Cnr)